
Detecting Molecules

Author: Shi-Chun Tsai
National Chiao-Tnug University, sctsai@cs.nctu.edu.tw, country: Taiwan

Subtask 1 is special case, iterate all possible k ≤ n, try to take exactly k molecules.

Subtask 2 is special case, iterate all possible k1, k2 : k1 + k2 ≤ n, try to take exactly k1
molecules of minimal weight and exactly k2 molecules of maximal weight.

Subtasks 3 and 4 may be solved using dynamic programming. The task is classic knap-
sack problem. Use O(n · u) of time, and O(u) of space.

You may optimize the dynamic programming, use bitset and you’ll pass Subtasks 5.

We suggested, contestant who solves Subtasks 5 and 6 will invent greedy approach.
If you implement greedy in O(n2) you’ll pass only Subtask 5.
Good time to pass Subtask 6 is O(n log n).

There are 3 correct greedy solutions. All of them start with sorting the array of weights
in nondecreasing order.

Greedy 1. Let fix k, number of molecules to take. We can choose set of size k with
sum in [l..r] iff minSum[k] ≤ u and maxSum[k] ≤ l. Where minSum[] is partial mini-
mums on prefixes and maxSum[] is partial maximums on suffixes. Both of them may be
precalculated in O(n).

Proof. Lets take minimal possible k molecules, its summary weight does not exceed l. Lets
change the set smoothly from ”k minimal molecules” to ”k maximal molecules”. One step:
drop any one molecule, take any one another. Each step changes the sum by at most u− l.
The last value of sum is at least l. So one of intermediate steps gives l ≤ sum ≤ u. �

Greedy 2. There exists an answer which forms segment.
Use two pointers to find it in O(n).

Proof. Lets fix k – number of molecules in the answer. The smallest k molecules form
the leftest segment, the biggest k form the rightest segment. Lets change the set smoothly
from ”the leftest segment” to ”the rightest segment”. One step: drop the leftest molecule,
add new one at the right. �

Greedy 3. There exists an answer which forms union of prefix and suffix.
Use two pointers to find it in O(n).

Proof. Lets fix k – number of molecules in the answer. The smallest k molecules form
prefix, the biggest k form suffix. Lets change the set smoothly from ”prefix” to ”suffix”.

1

One step: make prefix shorter by one, make suffix longer by k. �

2

Roller Coaster Railroad

Author: Kento Nikaido
Keio University, snukent@gmail.com, Japan

Subtask 1. To solve the first subtask, one could iterate over all n! possible permutations
of the special sections. Once the permutation is fixed, the only thing left is to compute the
required railway segment length between every two consecutive sections: if the ith section
is followed by the jth one, then the required length is max(0, t[i]− s[j]).

Subtask 2. One could use a standard dynamic programming approach to solve the second
subtask. Every subset of the given sections set can be encoded as a bit mask (from 0 to
2n − 1). Let ans[mask][i] denote the minimum total railway length, considering only the
sections from the set encoded by mask with an additional restriction that the ith special
section should go first.

1. If mask = 2i (there is only one special section), the answer is clearly zero.

2. Otherwise, there must be a section j following the ith one, so

ans[mask][i] = min
j 6=i, j∈mask

(
ans[mask − 2i] + max(0, t[i]− s[j])

)
The answer to the problem is min

i
(ans[2n − 1][i]). One could also notice that this subtask

is an instance of the well-known TSP (travelling salesman problem), where the special
sections represent the cities, and the distance function is the required railway segment
length.

Subtask 3. Let’s add an additional special section with s = ∞ and t = 1: now we can
introduce a restriction that the train must have speed exactly 1 km/h at the end of the
journey (here ∞ represents any number greater or equal than any of the numbers given in
the input data — 109 would suffice).

3

Consider an infinite graph, with a vertex set 1, 2, 3, ... and there is an edge from s[i] to
t[i] for every section i (including the added one). For every positive integer x consider
the balance value: (number of edges going over the segment [x,x+1] from left to right)
minus (number of edges going over the segment [x,x+1] from right to left). In the picture
above one can see three edges going from left to right (red) and two going in the opposite
direction (green), so the balance is 1.

If one aims to start from 1 km/h and end with the same speed, then the train must cross
the segment [x, x + 1] equal number of times in both directions. If the balance is positive
then it’s necessary to add an additional green edge to slow down the train, so at least
one railway segment is required and the answer is not zero. If the balance is negative it
just means that the train needs to be accelerated at some point, so one can add as many
additional red edges as needed for free.

Once the balance equals zero for every x, it is sufficient to check whether the resulting
graph is connected or not. If the graph is not connected, than the answer is clearly not
zero: to go from one component to the other it’s needed to slow down the train at least
once, so an additional railway segment is required. If the graph is connected, then, since
all the balances are zero, for every vertex x its in-degree equals its out-degree, and thus
there exists an Euler cycle in this graph, from which one could construct a valid sections
arrangement.

To do this efficiently, one need to consider only the ”interesting” values of x, which are
given in the input data, and instead of considering segments [x, x+ 1] one should consider
[interestingi, interestingi+1].

Subtask 4. The solution for the last subtask naturally emerges from the previous one. If
the balance is positive for some x = interestingi, it is required to add additional green edges
until the balance is restored, and every green edge corresponds to a railway segment. Thus,
for every x = interestingi one needs to add max(0, balance · length) to the answer, where
length stands for the distance to the next interesting point (interestingi+1− interestingi).

The last piece is to make the graph connected. In case the balance is zero we can connect
interestingi and interestingi+1 with two edges in both directions, paying the length of this
segment. Now we need to solve an instance of the well-know MST (minimum spanning
tree) problem.

4

Shortcut

Author: Gleb Evstropov
National Research University High School of Economy, glebshp@yandex.ru, country: Russia

Subtasks 1 and 2: try to connect every pair of stations on the main line and then find
the diameter by checking every pair of stations. In Subtask 2 you have to precompute the
stations coordinates along the main line xi =

∑i−1
j=0 lj. These values will be used in all

solutions for the other subtasks.

Subtasks 3 and 4: we can try to connect every pair of stations on the main line and
then find the resulting diameter. To find the diameter, we can write down the resulting
cycle and then iterate through it, keeping a pointer to the opposite position on the cycle
(opposite in terms of distance). We also can maintain two queues for each of the halves,
keeping the furthest stations in terms of cycle distance plus secondary line length. This
will help us to compute the diameter in O(n) time, making the solution run in O(n3) time
in total. In subtask 3, we can use some data structures instead of queues, making the
solution run in O(n3 log(n)). However, both solutions are technically complex.

Subtask 5: This subtask requires some clever ideas. First, we can do binary search on
the answer. Then, we have to somehow check if it’s possible to make the diameter less or
equal to some fixed value k. Let’s write some inequations.

Let’s allow the express line start and end not only on the stations, but also on arbitrary
points y and z on the main line. We use the same coordinate system that was used to
compute xi.

If we take a look at some pair i and j we can see that if di + dj + |xi − xj| 6 k then all
pairs of y and z work. Otherwise, only y and z such that di + dj + |xi − y|+ |xj − z| 6 k
are valid. This formula actually describes a square rotated 45◦. What we need to do is to
try all pairs of i and j, cross corresponding squares and then check if there is some point
where y = xa and z = xb inside the resulting area.

5

So far we can just check for such point by trying all possible pairs of a and b. However,
there is a nice way to perform this check in linear time and not care about its impact to
overall complexity in future. Proceed with a sweep line and keep two pointers: on the
lowest point above the square and highest point below the square. Since functions of both
positions from the x-coordinate of the sweep line are unimodal the overall complexity will
be O(n).

The total complexity of such solution is O(n2 logM) where M is the maximal possible
answer.

Subtask 6: Now, two more observations are needed. Let’s fix j > i and y < z. Now the
pair produces some square iff xj − xi + dj + di > k. Let’s fix j and find the intersection
of the squares for all possible i. The bounds of the square produced can be rewritten as
follows:

6

z + y 6 k + (xj − dj) + (xi − di);

z + y > (xj + dj) + (xi + di)− k;

z − y 6 k + (xj − dj)− (xi + di);

z − y > (xj + dj)− (xi − di)− k.

We can see that the bounds only depend on xi − di and xi + di. We need only maximal
and minimal values of xi− di and xi + di, so we can use some data structure, for example,
segment tree, to find them in O(n log(n)) time. The total complexity of this solution is
O(n log(n) log(M)).

Subtasks 7 and 8: Notice that xj − xi + dj + di > k is equal to (xj + dj)− (xi− di) > k.
It follows that if we iterate through j in the order of increasing (xj + dj) then the set of
i that is used to take minimum and maximum values is only expanding, i.e. once some
particular i is in the set, it remains there for all remaining values of j. Thus, we can keep
current maximum and minimum values of xi − di and xi + di without any data structure
with the use of the two pointers technique and two sorted arrays. The total complexity of
the full-score solution is O(n logM). Note, that sorting is done at the very beginning and
there is no need to resort these two arrays in each iteration of binary search.

The another approach to achieve this time bound that doesn’t use sort (and thus solves
the decision problem itself in linear time) is to get rid of useless elements. We say that
station i dominates station j if di > dj + |xi − xj|. Now, if one station is dominated by
the other we can consider only dominator as the endpoint of the express line (unless the
position being dominated is considered for the other end). The set of positions that are
not dominated by any other index can be found in linear time by computing prefix and
suffix maximums. Now when we use the same solution as for subtask 6, but we query
maximum and minimum values for inequality only when considering “good” positions (not
dominated by any other positions). This allows to achieve the situation that the query
bound moves only right and we can process each of them in O(1).

7

Paint By Numbers

Author: Michal Forǐsek
Comenius University Bratislava, misof@ksp.sk, country: Slovakia

Subtask 1 is as simple as it gets: just generate and intersect all possible locations of the
clue.

Subtask 2: if you really have to, you can bruteforce the 220 configurations and check
whether they match the clues. Your loss (of time), directly solving subtask C is much
simpler.

Subtask 3 has a special case, helpfully shown in Example 2.

Except for that special case, we can only deduce black cells. This can be done greedily: for
each clue, find the leftmost and the rightmost valid position of the corresponding block.
If their intersection is non-empty, those cells are guaranteed to be black. (Proof of a more
general statement is given below.)

The same approach works for subtask 4 as well. Additionally, we are able to deduce some
white cells. One case is shown in Example 3. The same logic has to be applied at the
beginning and at the end of a row. (In fact, the easiest solution is to prepend and append
a white cell as a sentinel.)

Here’s a tricky test case for subtask D: n = 13, k = 4, c = (3, 1, 1, 3), s = "...._..._....".
Correct output: ?XX?_X_X_?XX?. The tricky part here is that we can deduce the white
cell at index 6. (Whenever two consecutive blocks have a fixed position, all cells between
those positions have to be white.)

Subtask 4 was as far as we could get with an easy greedy approach. In order to solve the
general version we will use dynamic programming.

One possible solution looks as follows:

• Step 1: Compute prefix sums of given white cells and given black cells (each sepa-
rately).

• Step 2: For each i and j, compute the answer P (i, j) to the following question: “Is
there a valid solution if we only consider the first i clues and the first j cells of the
given puzzle (as if cutting away and discarding the rest)?”

• Base case of the recurrence: If i = 0, this is possible iff there is no given black cell
among the first j cells.

8

• Recursive case: If cell j − 1 is forced white, P (i, j) = P (i, j − 1). If cell j − 1 is
forced black, we verify that it is possible to place the last block there (the number of
forced white cells it overlaps must be zero, the next cell to the left must be able to
be white) and if that is the case, we make a recursive call P (i− 1, j − c− 1) where c
was the corresponding clue. Finally, if cell j−1 isn’t forced, the answer is the logical
or of both above cases.

• Step 3: The same in reverse, i.e., with suffixes of the puzzle and the list of clues.

• Step 4: For each cell, we verify whether it can be white. A cell cannot be white if it
is forced to be black. If that is not the case, we try all possibilities for the number
of black blocks to the left of the cell, and verify each possibility using the data we
precomputed in steps 2+3.

• Step 5: For each clue, we mark all the cells where it can be located as cells that can
be black. Suppose we are processing clue t and that its value is ct. For each i we
verify whether the clued block can be placed starting from cell i. This requires a few
checks that can all be done in constant time:
– cells i− 1 and i + ct must not be forced black
– cells i through i + ct − 1 must not be forced white
– there must be a valid solution for the first t clues and the first i− 1 cells
– there must be a valid solution for the last k− t− 1 clues and the last n− i− ct− 1
cells

The above solution can conveniently be implemented in O(nk), where k is the number of
clues. Less efficient implementations may run in O(n2), these should not solve subtask 7.
Other implementations may run in something like O(n2|C|) or in O(n|C|2). These should
solve subtask 5, but not subtasks 6 and 7.

Proof of the greedy solution (subtasks 1-4)

Theorem 1. Consider the version of our puzzle where initially each cell is either unknown
or forced white.

Suppose that there is a cell x such that there are two valid solutions in which this cell
belongs to different black blocks. Then there is also a valid solution in which this cell is
white.

Proof. Suppose that we have i < j such that in the first solution the block that covers cell
x corresponds to clue i and in the second solution it corresponds to clue j.

We will now construct a new solution as follows: take the first j − 1 black blocks from the
second solution and the remaining blocks from the first solution.

9

This is a valid solution because in the second solution the first j − 1 black blocks are all
strictly to the left of cell x and in the first solution all the remaining blocks are strictly to
the right of cell x. It is also obvious that for this reason cell x is white in the new solution.
�

10

Unscrambling Messy Bug

Author: Shi-Chun Tsai
National Chiao-Tnug University, sctsai@cs.nctu.edu.tw, country: Taiwan

Subtask 1 allows you to check all 2n possible elements, so it can be solved by various
solutions. For example, you can add 2n−1 random elements in your set, check all elements,
try all n(n−1)

2
transpositions and check that it will give you the same result.

Subtask 2 may be solved by simple solution, using at most n operations add_element

and at most n(n−1)
2

operations check_element operations.

• Lets add n elements into the set, i-th elements will have first i bits set to one.

add_element("10000000")

add_element("11000000")

add_element("11100000")

add_element("11110000")

add_element("11111000")

add_element("11111100")

add_element("11111110")

add_element("11111111")

• Now we will get positions of bits one by one. First, lets find the position of bit 0.
This can be done using at most n− 1 queries:

check_element("10000000") returned false

check_element("01000000") returned false

check_element("00100000") returned false

check_element("00010000") returned false

check_element("00001000") returned false

check_element("00000100") returned true

• Now we know the position of bit 0 and want to find the position of bit 1. This can
be done using at most n− 2 queries:

check_element("10000100") returned false

check_element("01000100") returned false

check_element("00100100") returned false

check_element("00010100") returned true

• And so on, we can find position of i-th bit using n− i−1 queries, so the total number
of queries in the worst case is n(n−1)

2
= 496.

11

Subtask 3 can be solved by several optimizations of the previous algorithm. The simplest
one is to shuffle the order of bytes. This will give us the average number of queries
n(n−1)

4
= 248, which was enough to pass the tests.

Subtasks 4 and 5 require O(n log n) solution, in subtasks 4 you can make at most
2n log n operations of each type, in subtasks 5 you can make only n log n operations.

Subtask 5 may be solved using divide and conquer technique. Lets try to split all bits
into two halves using n requests, and solve problem for each half independently. In this
solution we will make at most n log2 n operations of each type.

• To split group of bits into two halves, we will add into set n/2 elements, i-th element
will have i-th bit set to one, all other set to zero:

add_element("10000000")

add_element("01000000")

add_element("00100000")

add_element("00010000")

• After this, we will check n elements with single bit set to one. For example:

check_element("10000000") returned false

check_element("01000000") returned true

check_element("00100000") returned false

check_element("00010000") returned false

check_element("00001000") returned true

check_element("00000100") returned true

check_element("00000010") returned false

check_element("00000001") returned true

• Now we know, which n/2 bits correspond to first n/2 bits. In this example we know,
that bits 1, 4, 5, and 7 correspond to bits 0–3. So now we will solve same problem
for them only, and after that solve problem for other n/2 bits.

• In order to solve problem for some subset of bits, we need to make sure that the
elements we use in different subproblems are distinct. We can achieve this by setting
all bits that are not in our subset to ones. For example, when we want to split bits
0–3 into halves, we will make the following operations.

add_element("10001111")

add_element("01001111")

check_element("11110010")

check_element("10111010")

12

check_element("10110110")

check_element("10110011")

13

Aliens

Author: Chethiya Abeysinghe
Forestpin (Pvt) Ltd, chethiya@gmail.com, country: Sri Lanka

Subtask 1. k = n means that you can use a photo for each point of interest: the
minimum photo containing point (ri, ci) is the square containing points (ri, ri) and (ci, ci).
Constraints in this subtask were small enough to iterate over all cells in that square and
mark them as photographed. After processing all photos, calculate and return the number
of cells which have been marked at least once.

Subtask 2 required the participants to come up with a dynamic programming solution.
Some important observations:

• If a photo covers two points (x, x) and (y, y), then it also covers all points between
them.

• Each photo’s boundary must be equal to some ri.

Now we can treat this problem as a dynamic programming problem: cover n points on line
using k segments such that sum of squares of their lengths is as small as possible. Start
with preprocessing the input data: sort all points by ri and remove duplicates. Notice that
each photo should cover some contiguous set of points.

• Let fi,j be the minimum cost to cover first i points with at most j photos.

• f0,j = 0 for all 0 ≤ j ≤ k.

• fi,j = min
t<i

ft,j−1 + (ri−1 − lt + 1)2.

• fn,k contains the answer.

• O(nk) states, calculating transitions from each state takes O(n) time.

• Overall running time: O(n2k).

Subtask 3 dropped the ri = ci restriction. We’ll describe the similar DP solution for this
subtask. It’s possible to prove that photo containing points (x, x) and (y, y) covers point
(r, c) if and only if segment [min(r, c),max(r, c)] is fully contained in segment [x, y] (x ≤ y).
So if we consider segments [min(ri, ci),max(ri, ci)] instead of points (ri, ci), the problem is
reduced to the following: cover all n segments with k larger segments such that their total
area (considering intersections) is minimized.

14

If segment Si is included in some other segment Sj, then any photo that covers Sj also
covers Si, so we can safely remove Si. Removing all such segments can be done in O(n log n)
time:

• First, sort all the segments in order of increasing left endpoint.

• In case of equality, sort them in order of decreasing right endpoint.

• Iterate over all segments in this order.

• If the current segment is included in the last non-removed segment, remove it. Oth-
erwise keep it.

Now, since all left endpoints are increasing and no segment is included in the other, then
for all i < j: ri < rj and ci < cj. Observations and definition of fi,j are almost identical to
previous solution:

• f0,j = 0 for all 0 ≤ j ≤ k

• fi,j = min
t<i

ft,j−1 + (ri−1 − lt + 1)2 −max(0, rt−1 − lt + 1)2 (1)

• Last term in this formula accounts for the intersection of segments t−1 and t (t > 0).

• fn,k contains the answer.

• Overall running time: O(n2k).

Subtasks 4 and 5. Here you were required to come up with an optimization of the DP
solution described above. Subtask 4 allowed O(n2) solutions. One possible solution uses
the Knuth’s optimization.

Define Ai,j as the optimal t in (1) and cost(t, i) = (ri−1 − lt + 1)2 −max(0, rt−1 − lt + 1)2.

Lemma: Ai,j−1 ≤ Ai,j ≤ Ai+1,j

This allows us to prune the search space on each step, reducing the running time to
O(n2). If you calculate fi,j in order of increasing j and decreasing i, then at the moment
of calculating fi,j, values of Ai,j−1 and Ai+1,j are already known, so you can only check
t ∈ [Ai,j−1, Ai+1,j].

It can be rather difficult to prove the correctness formally, but it’s easy to be convinced
this is true. A possible strategy for the competition would be to implement this solution
without a formal proof, then test the hypothesis on smaller inputs using the solution for

15

subtask 3. It is known that this optimization results in O(n2) running time. Also, don’t
forget about 64 bit integers.

Subtask 5 required a different kind of optimization, running in O(nk) or O(nk log n) time.
Implementing any of the two following optimizations was enough to pass all the tests from
this subgroup.

Divide and Conquer optimization (O(nk log n))

Using the fact that Ai−1,j ≤ Ai,j and that all f(∗, j) can be calculated from all f(∗, j − 1),
we can apply divide and conquer optimization.

Consider this recursive function Calculate(j, Imin, Imax, Tmin, Tmax) that calculates all
f(i, j) for all i ∈ [Imin, Imax] and a given j using known f(∗, j − 1).

function Calculate(j, Imin, Imax, Tmin, Tmax)
if Imin > Imax then

return
Imid ← 1

2
(Imin + Imax)

calculate fImid,j naively, let Topt be the optimal t ∈ [Tmin, Tmax]
Calculate(j, Imin, Imid − 1, Tmin, Topt)
Calculate(j, Imid + 1, Imax, Topt, Tmax)

The initial call to this function will be Calculate(j, 1, n, 0, n) for all j from 1 to k. The
time speedup comes up from the fact that all naive calculations of fImid,j on each level
of recursion take O(n) in total, because each recursive call splits the segment [Tmin, Tmax]
into 2 (almost) disjoint segments. The depth of recursion is O(log n), so the running time
of each Calculate call is O(n log n). After calculating all k layers in O(kn log n) time, we
get the answer.

Convex Hull Trick optimization (O(nk))

Another possible optimization is called Convex Hull Trick. Let’s expand (1):

fi,j = min
t<i

ft,j−1 + (ri−1 − lt + 1)2 −max(0, rt−1 − lt + 1)2

= min
t<i

ft,j−1 + r2i−1 − 2(lt − 1)ri−1 + (lt − 1)2 −max(0, rt−1 − lt + 1)2

= Ci + min
t<i

Mtri−1 + Bt,j

where Ci = r2i−1, Mt = −2(lt − 1), Bt,j = ft,j−1 + (lt − 1)2 −max(0, rt−1 − lt + 1)2.

We see that the formula can be expressed in terms of minimum of linear functions Mtx+Bt,j,
evaluated at x = ri−1. Notice that as i increases, Mi decreases and ri increases. That allows

16

us to maintain the lower envelope of these linear functions using a stack and query the
minimum value at given x. Adding a line and querying a point can be implemented in O(1)
amortized time, so the total running time is O(nk). This technique is often referred to as
the Convex Hull Trick. We will also use it to get the 100 point solution for this problem.

Subtask 6. Let’s look at fi,k as a function of k and study the differences between two
adjacent values. The following theorem states that these differences are non-increasing.
We’ll call such functions convex.

Theorem: fi,j−1 − fi,j ≥ fi,j − fi,j+1

Let’s assign some constant penalty C for each photo. The new cost function f̃i,j = fi,j +jC

is still convex, because f̃i,j−1 − f̃i,j = fi,j−1 − fi,j − C.

Let’s introduce another optimization problem without the restriction on number of photos.

gi =
n

min
k=1

f̃i,k =
n

min
k=1

(fi,k + kC)

This equation for gi can also be expressed only in terms of previous values of gj(j < i).

gi = min
t<i

gt + (ri−1 − lt + 1)2 −max(0, rt−1 − lt + 1)2 + C

Using this formula, all gi can be computed in O(n) time using Convex Hull Trick opti-
mization, if all li and ri are sorted beforehand. The solution from subtask 5 can also be
modified to find the minimum number of photos required to achieve the optimum, call it
p(C).

Since f̃ is convex, p(C) is also equal to the minimum x such that f̃n,x − f̃n,x+1 ≤ 0 which
is equivalent to fn,x − fn,x+1 ≤ C, so p(C) is monotone. Also if we set C = 0, optimum
value of gn is achieved with the n photos, and if we set C = M2, then the optimal solution
only contains one photo. Combining everything above, we can use binary search to find
such Copt that p1 = p(Copt) ≥ k and p2 = p(Copt + 1) ≤ k.

This means that all differences (fn,p2 − fn,p2+1) , (fn,p2+1 − fn,p2+2) , . . . , (fn,p1−1 − fn,p1) are
equal, and fn,j is a linear function of j on this interval. Since the desired value of fn,k is
somewhere in this interval, it’s possible to calculate it just by linear interpolation, because
all slopes are equal.

This solution requires sorting the segments once and doing O(logm) iterations of binary
search to find Copt, each iteration running in linear time. Total running time: O(n log n +
n logm).

17

