
1	/	4

International	Olympiad	in	Informatics	2016
12-19th	August	2016
Kazan,	Russia
day2_2

messymessy
Country:	ISC

Unscrambling	a	Messy	Bug
Ilshat	is	a	software	engineer	working	on	efficient	data	structures.	One	day	he
invented	a	new	data	structure.	This	data	structure	can	store	a	set	of	non-negative	 -
bit	integers,	where	 	is	a	power	of	two.	That	is,	 	for	some	non-negative
integer	 .

The	data	structure	is	initially	empty.	A	program	using	the	data	structure	has	to	follow
the	following	rules:

The	program	can	add	elements	that	are	 -bit	integers	into	the	data	structure,
one	at	a	time,	by	using	the	function	add_element(x).	If	the	program	tries	to
add	an	element	that	is	already	present	in	the	data	structure,	nothing	happens.
After	adding	the	last	element	the	program	should	call	the	function
compile_set()	exactly	once.
Finally,	the	program	may	call	the	function	check_element(x)	to	check
whether	the	element	 	is	present	in	the	data	structure.	This	function	may	be
used	multiple	times.

When	Ilshat	first	implemented	this	data	structure,	he	made	a	bug	in	the	function
compile_set().	The	bug	reorders	the	binary	digits	of	each	element	in	the	set	in	the
same	manner.	Ilshat	wants	you	to	find	the	exact	reordering	of	digits	caused	by	the
bug.

Formally,	consider	a	sequence	 	in	which	every	number	from	 	to
	appears	exactly	once.	We	call	such	a	sequence	a	permutation.	Consider	an

element	of	the	set,	whose	digits	in	binary	are	 	(with	 	being	the	most
significant	bit).	When	the	function	compile_set()	is	called,	this	element	is	replaced
by	the	element	 .

The	same	permutation	 	is	used	to	reorder	the	digits	of	every	element.	Any
permutation	is	possible,	including	the	possibility	that	 	for	each	

.

For	example,	suppose	that	 ,	 ,	and	you	have	inserted	into	the
set	integers	whose	binary	representations	are	0000,	1100	and	0111.	Calling	the
function	compile_set	changes	these	elements	to	0000,	0101	and	1110,
respectively.

Your	task	is	to	write	a	program	that	finds	the	permutation	 	by	interacting	with	the
data	structure.	It	should	(in	the	following	order):
1.	 choose	a	set	of	 -bit	integers,
2.	 insert	those	integers	into	the	data	structure,

n

n n = 2b

b

n

x

p = [, … ,]p0 pn−1 0
n − 1

, … ,a0 an−1 a0

, , … ,ap0
ap1

apn−1

p
= ipi

0 ≤ i ≤ n − 1

n = 4 p = [2, 1, 3, 0]

p

n

2	/	4

3.	 call	the	function	compile_set	to	trigger	the	bug,
4.	 check	the	presence	of	some	elements	in	the	modified	set,
5.	 use	that	information	to	determine	and	return	the	permutation	 .

Note	that	your	program	may	call	the	function	compile_set	only	once.

In	addition,	there	is	a	limit	on	the	number	of	times	your	program	calls	the	library
functions.	Namely,	it	may

call	add_element	at	most	 	times	(is	for	"writes"),
call	check_element	at	most	 	times	(is	for	"reads").

Implementation	details
You	should	implement	one	function	(method):

int[]	restore_permutation(int	n,	int	w,	int	r)
n:	the	number	of	bits	in	the	binary	representation	of	each	element	of	the
set	(and	also	the	length	of).
w:	the	maximum	number	of	add_element	operations	your	program	can
perform.
r:	the	maximum	number	of	check_element	operations	your	program	can
perform.
the	function	should	return	the	restored	permutation	 .

In	the	C	language,	the	function	prototype	is	a	bit	different:
void	restore_permutation(int	n,	int	w,	int	r,	int*	result)

n,	w	and	r	have	the	same	meaning	as	above.
the	function	should	return	the	restored	permutation	 	by	storing	it	into
the	provided	array	result:	for	each	 ,	it	should	store	the	value	 	into
result[i].

Library	functions
In	order	to	interact	with	the	data	structure,	your	program	should	use	the	following
three	functions	(methods):

void	add_element(string	x)
This	function	adds	the	element	described	by	x	to	the	set.

x:	a	string	of	'0'	and	'1'	characters	giving	the	binary	representation	of
an	integer	that	should	be	added	to	the	set.	The	length	of	x	must	be	 .

void	compile_set()
This	function	must	be	called	exactly	once.	Your	program	cannot	call
add_element()	after	this	call.	Your	program	cannot	call	check_element()
before	this	call.
boolean	check_element(string	x)
This	function	checks	whether	the	element	x	is	in	the	modified	set.

x:	a	string	of	'0'	and	'1'	characters	giving	the	binary	representation	of
the	element	that	should	be	checked.	The	length	of	x	must	be	 .
returns	true	if	element	x	is	in	the	modified	set,	and	false	otherwise.

Note	that	if	your	program	violates	any	of	the	above	restrictions,	its	grading	outcome

p

w w
r r

p

p

p
i pi

n

n

3	/	4

will	be	"Wrong	Answer".

For	all	the	strings,	the	first	character	gives	the	most	significant	bit	of	the
corresponding	integer.

The	grader	fixes	the	permutation	 	before	the	function	restore_permutation	is
called.

Please	use	the	provided	template	files	for	details	of	implementation	in	your
programming	language.

Example
The	grader	makes	the	following	function	call:

restore_permutation(4,	16,	16).	We	have	 	and	the	program	can	do
at	most	 	"writes"	and	 	"reads".

The	program	makes	the	following	function	calls:
add_element("0001")
add_element("0011")
add_element("0100")
compile_set()
check_element("0001")	returns	false
check_element("0010")	returns	true
check_element("0100")	returns	true
check_element("1000")	returns	false
check_element("0011")	returns	false
check_element("0101")	returns	false
check_element("1001")	returns	false
check_element("0110")	returns	false
check_element("1010")	returns	true
check_element("1100")	returns	false

Only	one	permutation	is	consistent	with	these	values	returned	by	check_element():
the	permutation	 .	Thus,	restore_permutation	should	return	[2,
1,	3,	0].

Subtasks
1.	 (20	points)	 ,	 ,	 ,	 	for	at	most	2	indices	 	(

),
2.	 (18	points)	 ,	 ,	 ,
3.	 (11	points)	 ,	 ,	 ,
4.	 (21	points)	 ,	 ,	 ,
5.	 (30	points)	 ,	 ,	 .

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	integers	 ,	 ,	 ,
line	2:	 	integers	giving	the	elements	of	 .

p

n = 4
16 16

p = [2, 1, 3, 0]

n = 8 w = 256 r = 256 ≠ ipi i
0 ≤ i ≤ n − 1

n = 32 w = 320 r = 1024
n = 32 w = 1024 r = 320
n = 128 w = 1792 r = 1792
n = 128 w = 896 r = 896

n w r
n p

4	/	4

