
1	/	3

International	Olympiad	in	Informatics	2016
12-19th	August	2016
Kazan,	Russia
day2_1

paintpaint
Country:	IND

Paint	By	Numbers
Paint	By	Numbers	is	a	well-known	puzzle	game.	We	consider	a	simple	one-
dimensional	version	of	this	puzzle.	In	this	puzzle,	the	player	is	given	a	row	of	 	cells.
The	cells	are	numbered	0	through	 	from	the	left	to	the	right.	The	player	has	to
paint	each	cell	black	or	white.	We	use	‘X’	to	denote	black	cells	and	‘_’	to	denote	white
cells.

The	player	is	given	a	sequence	 	of	 	positive	integers:	the	clues.
He	has	to	paint	the	cells	in	a	way	such	that	the	black	cells	in	the	row	form	exactly	
blocks	of	consecutive	cells.	Moreover,	the	number	of	black	cells	in	the	 -th	block	(-
based)	from	the	left	should	be	equal	to	 .	For	example,	if	the	clues	are	 ,
the	solved	puzzle	must	have	exactly	two	blocks	of	consecutive	black	cells:	one	of
length	3	and	then	another	of	length	4.	Hence,	if	 	and	 ,	one	valid
solution	is	“_XXX__XXXX”.	Note	that	“XXXX_XXX__”	is	not	a	valid	solution:	the	blocks
of	black	cells	are	not	in	the	correct	order.	Also,	“__XXXXXXX_”	is	not	a	valid	solution:
there	is	a	single	block	of	black	cells,	not	two	separate	blocks.

You	are	given	a	partially	solved	Paint	By	Numbers	puzzle.	That	is,	you	know	 	and	 ,
and	additionally	you	know	that	some	cells	must	be	black	and	some	cells	must	be
white.	Your	task	is	to	deduce	additional	information.	Specifically,	you	should	find	cells
that	are	painted	black	in	every	valid	solution,	and	cells	that	are	painted	white	in	every
valid	solution.	You	may	assume	that	the	input	is	such	that	there	is	at	least	one	valid
solution.

Implementation	details
You	should	implement	the	following	function	(method):

string	solve_puzzle(string	s,	int[]	c).
s:	string	of	length	 .	For	each	 	()	character	 	is:

‘X’,	if	cell	 	must	be	black,
‘_’,	if	cell	 	must	be	white,
‘.’,	if	there	is	no	information	about	cell	 .

c:	array	of	length	 	containing	clues,	as	defined	above,
the	function	should	return	a	string	of	length	 .	For	each	 	(

)	character	 	of	the	output	string	should	be:
‘X’,	if	cell	 	is	black	in	every	valid	solution,
‘_’,	if	cell	 	is	white	in	every	valid	solution,
‘?’,	otherwise	(i.e.,	if	there	exist	two	valid	solutions	such	that	cell	 	is
black	in	one	of	them	and	white	in	the	other	one).

In	the	C	language	the	function	signature	is	a	bit	different:

n
n − 1

c = [, … ,]c0 ck−1 k
k

i 0
ci c = [3, 4]

n = 10 c = [3, 4]

n c

n i 0 ≤ i ≤ n − 1 i
i
i

i

k
n i

0 ≤ i ≤ n − 1 i
i
i

i

2	/	3

void	solve_puzzle(int	n,	char*	s,	int	k,	int*	c,	char*	result)
n:	length	of	the	string	s	(number	of	cells),
k:	length	of	the	array	c	(number	of	clues),
the	other	parameters	are	the	same	as	above,
instead	of	returning	a	string	of	 	characters,	the	function	should	write	the
answer	to	the	string	result.

Examples

Example	1

solve_puzzle("..........",	[3,	4])

These	are	all	possible	valid	solutions	of	the	puzzle:
“XXX_XXXX__”,
“XXX__XXXX_”,
“XXX___XXXX”,
“_XXX_XXXX_”,
“_XXX__XXXX”,
“__XXX_XXXX”.

One	can	observe	that	the	cells	with	(0-based)	indices	2,	6,	and	7	are	black	in	each
valid	solution.	Each	of	the	other	cells	can	be,	but	does	not	have	to	be	black.	Hence,
the	correct	answer	is	“??X???XX??”.

Example	2

solve_puzzle("........",	[3,	4])

In	this	example	the	entire	solution	is	uniquely	determined	and	the	correct	answer	is
“XXX_XXXX”.

Example	3

solve_puzzle("..._._....",	[3])

In	this	example	we	can	deduce	that	cell	4	must	be	white	as	well	—	there	is	no	way	to
fit	three	consecutive	black	cells	between	the	white	cells	at	indices	3	and	5.	Hence,	the
correct	answer	is	“???___????”.

Example	4

solve_puzzle(".X........",	[3])

There	are	only	two	valid	solutions	that	match	the	above	description:
“XXX_______”,
“_XXX______”.

Thus,	the	correct	answer	is	“?XX?______”.

Subtasks
In	all	subtasks	 ,	and	 	for	each	 .

n

1 ≤ k ≤ n 1 ≤ ≤ nci 0 ≤ i ≤ k − 1
n ≤ 20 k = 1

3	/	3

1.	 (7	points)	 ,	 ,	 	contains	only	‘.’	(empty	puzzle),
2.	 (3	points)	 ,	 	contains	only	‘.’,
3.	 (22	points)	 ,	 	contains	only	‘.’,
4.	 (27	points)	 ,	 	contains	only	‘.’	and	‘_’	(information	only	about	white

cells),
5.	 (21	points)	 ,
6.	 (10	points)	 ,	 ,
7.	 (10	points)	 ,	 .

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	string	 ,
line	2:	integer	 	followed	by	 	integers	 .

n ≤ 20 k = 1 s
n ≤ 20 s

n ≤ 100 s
n ≤ 100 s

n ≤ 100
n ≤ 5 000 k ≤ 100
n ≤ 200 000 k ≤ 100

s
k k , … ,c0 ck−1

